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ABSTRACT Is highly approximate knowledge of
a protein’s backbone structure sufficient to success-
fully identify its family, superfamily, and tertiary
fold? To explore this question, backbone dihedral
angles were extracted from the known three-dimen-
sional structure of 2,439 proteins and mapped into 36
labeled, 60° � 60° bins, called mesostates. Using this
coarse-grained mapping, protein conformation can be
approximated by a linear sequence of mesostates.
These linear strings can then be aligned and assessed
by conventional sequence-comparison methods. We
report that the mesostate sequence is sufficient to
recognize a protein’s family, superfamily, and fold
with good fidelity. Proteins 2005;61:338–343.
© 2005 Wiley-Liss, Inc.

INTRODUCTION

Elements of local secondary structure – helices, hairpins
and turns – form on a fast timescale.1,2 In the hierarchic
model of folding,3–5 these local elements then further
organize to form tertiary structure.6–8 How many ways
can a given set of local structural elements be assembled
into a coherent three-dimensional structure? Many ways?
Several ways? Uniquely?

In globular proteins, primary structure determines ter-
tiary structure uniquely,9 and based on this tenet, com-
puter programs such as BLAST10 and FASTA11 have been
designed to recognize protein homologs in a database,
using pairwise sequence alignment. Although similar se-
quence implies similar structure,12,13 the converse proposi-
tion does not hold: proteins with the same fold in the
Structure Classification of Proteins (SCOP) database14

may have dissimilar sequences. Specifically, as the aligned
sequence identity between homologous proteins falls be-
low �30%, successful detection by pairwise alignment
diminishes markedly.12,15 In response, newer sequence-to-
profile and profile-to-profile methods16,17 have been devel-
oped that boost detection sensitivity for distantly related
proteins having similar structures. Such methods are still
based on sequence comparisons. Recently, however, Honig
and coworkers introduced a profile-to-profile alignment
program18 that improves the performance of remote homol-
ogy detection by combining secondary structure informa-
tion with primary sequence.

In fact, the work of Przytycka et al.19 suggests that
secondary structure alone may be sufficient to recognize
tertiary structure. In their study, 183 proteins, with less
than 30% aligned sequence identity,20 were represented as
strings of secondary structure elements, including turns

and loops. Using a simple scoring matrix, conventional
pairwise sequence comparisons between these strings
were performed and used to construct a Przytycka-tree
(P-tree), in which the distance between any two nodes is
proportional to the difference in score between their
aligned secondary structure strings. The P-tree is gener-
ated completely automatically, and it reflects the global
secondary structure relationships among the proteins
used to construct it: the closer the nodes, the greater the
similarity of secondary structure among their correspond-
ing proteins. Surprisingly, the straightforward P-tree was
found to be largely in agreement with the SCOP tree,
although the latter is a complex construct based on
structure, evolutionary knowledge, and human judgment.
This result lends support to the hypothesis that successful
fold recognition can be derived solely from knowledge of
secondary structure.

We extend this idea here by quantifying the degree to
which approximate backbone conformation can determine
the protein fold. This question is of considerable practical
interest in that such information can often be obtained
directly from experiment, using residual dipolar cou-
pling,21 for example.

In brief, our approach involves subdividing backbone
�,�-space into 36 labeled, 60° � 60° grid squares, called
mesostates (Fig. 1). Backbone dihedral angles were ex-
tracted from proteins of known structure and used to map
each residue into its corresponding mesostate, after which
the protein was rewritten as a linear string of mesostates.
Pairwise alignment of mesostate sequences was performed
using dynamic programming, with a mesostate substitu-
tion matrix derived from simulation.22 Our approach is
related to the earlier work of Sali and Blundell23 and of
Eisenberg and coworkers.24

SCOP family, superfamily, and fold benchmark tests14

were used for comparison with the following:

(1) established pairwise alignment programs WU-BLAST,
FASTA, and Smith–Waterman,25

(2) a sequence-to-profile alignment program, SAM-T2K,17

and
(3) a structure alignment program, VAST (Vector Align-

*Correspondence to: George D. Rose, T. C. Jenkins Department of
Biophysics, The Johns Hopkins University, 3400 N. Charles Street,
Baltimore, MD 21218-2608. Email: grose@jhu.edu

Received 24 February 2005; Accepted 8 April 2005

Published online 15 August 2005 in Wiley InterScience
(www.interscience.wiley.com). DOI: 10.1002/prot.20622

PROTEINS: Structure, Function, and Bioinformatics 61:338–343 (2005)

© 2005 WILEY-LISS, INC.



ment Search Tool),26 which is based solely on three-
dimensional information.

Results indicate that our approach performed quite well
for family recognition, and satisfactorily in fold and super-
family recognition.

MATERIALS AND METHODS
Dynamic Programming

A Needleman–Wunsch algorithm,27 MESO_ALIGN, was
developed to perform global alignment between two me-
sostate strings, with allowance for a gap penalty. The
primary alignment score between a pair of mesostates,
V(i,j), is the sum of two separate components:

V�i,j� � MESO�i,j� � SS�i,j� (1)

where MESO(i,j) represents the substitution score ob-
tained from a mesostate substitution matrix, and SS(i,j)
represents the substitution score obtained from a compan-
ion secondary-structure substitution matrix.

The gap penalty, Gap, is also composed of two parts, a
conventional affine gap penalty and an additional penalty
when residues with repetitive secondary structure are
aligned with a gap:

Gap � affine_gap � additional_gap (2)

Differing affine gap penalties are assigned to central and
flanking residues in a sequence of interest:

affine_gap � � 0, for flanking residues
20 � 2 � l, for central residues

(3)

additional_gap � l � nSS (4)

where nSS is the number of residues with repetitive
secondary structure in the gap, and l is the length of the
gap. The final score is the alignment score divided by the
length of the aligned sequence, including gaps.

Substitution Matrices

The mesostate substitution matrix was constructed from
hard-sphere Monte Carlo simulations of a nine-residue
polyala peptide.28 Five simulations were run in parallel,
with each of the 10,000 cycles preceded by 500 equilibra-
tion cycles. The mesostate transition frequencies, f(i,j),
between any two mesostates i and j were monitored for the
central residue, Ala5, and averaged over the five simula-
tions. To obtain a symmetric matrix, f(i,j) and f(j,i) were
assigned their mean when the two values differed. The
similarity score was then calculated as:

MESO�i,j� � �10 � log
f�i,j�

f�i� � f�j��
int

(5)

where f(i) is the total single mesostate occupation fre-
quency, and 10 is a scaling factor introduced for conve-
nience.

The secondary-structure substitution matrix was con-
structed subjectively, not calculated. Its elements were
deliberately set to have smaller values than those of the
mesostate substitution matrix to ensure that the second-
ary structure score would play a subordinate role in the
alignment.

Mesostate and Secondary Structure Assignment

A mesostate assignment was made from three-dimen-
sional coordinates by calculating the backbone dihedral
angles for each residue and mapping them as indicated in
Figure 1. In turn, the mesostate sequence was converted
into one of four secondary structure assignments using
PROSS29 (available from www.roselab.jhu.edu): T(urn),
H(elix), E(xtended), or C(oil). In detail, 	-turns (T) were
assigned to two-residue segments having mesostates from
the set {OO, OP, OJ, PO, PP, PJ, JO, JP, JJ, Mo, Mp, Mj,
Ro, Rp, Rj, oo, op, oj, po, pp, pj, jo, jp, jj, mO, mP, mJ, rO, rP,
rJ}. 
-Helices (H) were assigned to segments of five or more
residues having mesostates from the set {O, P}. 	-Strands
(E) were assigned to segments of three or more successive
residues having mesostates from the set {L, G, F, A, R, M}.
Residues not classified into one of these three categories
were assigned as coil (C). Finally, the secondary structure
sequence was adjusted using the following three rules:

(1) A single C residue flanked by helical residues (H) was
converted to H.

(2) A single C residue flanked by strand residues (E) was
converted to E.

(3) Sequences with more than five consecutive turn resi-
dues (T) were converted to H if all mesostates were
from the set {J, O, P}.

SCOP Benchmark Test

SCOP domains (version 1.63) with less than 40% se-
quence identity were obtained from the ASTRAL SCOP

Fig. 1. Dihedral angle space for a dipeptide, partitioned into 36 bins,
each corresponding to one mesostate.
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Database30 (astral.stanford.edu) and filtered to retain only
structures with resolution �2.0 Å. Domains comprised of
more than one chain or fewer than four elements of
secondary structure were also filtered. After filtering, 2439
domains remained in our library. The domain having the
best resolution was chosen from each family with at least
three family members, resulting in 113 domains for use in
the SCOP family benchmark test set. Applying the same
criteria, 144 and 159 domains were identified for the SCOP
superfamily and fold benchmark test sets, respectively.

The programs used for comparison included FASTA,
SMITH–WATERMAN, SAM-T2K, WU-BLAST, and VAST
(Table I). Default parameters were used in all cases except
that two different p-value cutoffs (0 and 4) were applied
separately for VAST. The BLOSUM62 matrix31 was
adopted for all sequence-alignment programs. All pro-
grams allow self-detection.

Global alignment algorithms do not follow an underly-
ing probability distribution, and therefore empirical esti-
mates, in the form of z-scores, were used to gauge align-
ment similarity. To obtain a mean and variance for each
query domain, a random library with the same length
distribution as our benchmarks was constructed by ran-
domly connecting six-residue segments taken from the test
sets. For every query domain, the programs MESO_ALIGN,
FASTA, SMITH–WATERMAN, and SAM-T2K were scored
against all domains in the test set. Z-scores were then
calculated from the mean and variance obtained by run-
ning the same program on the corresponding random
library instead. Specificity (accuracy) and sensitivity (cov-
erage) were computed as a function of threshold using the
formulae:

Specificity �
TP

TP � FP � 100% (6)

Sensitivity �
TP

TP � TN � 100% (7)

where TP (true positive) is the number of proteins that
were correctly identified as belonging to the same class (i.e.
family, superfamily, or fold) as the query, FP (false posi-
tive) is the number of proteins that were incorrectly
identified as belonging to the same class as the query, and
TN (true negative) is the number of proteins that were
incorrectly identified as belonging to a different class than
the query. Defined in this way, specificity measures the
percentage of correct predictions, while sensitivity mea-
sures the fraction of the library covered by the predictions.
Using these data, “specificity vs. sensitivity” curves were

drawn for each program. The mean and variance are not
easily obtained for VAST and WU-BLAST. Instead, the
score normalized by the length of the query domain
(VAST) and the negative logarithm of expectation (WU-
BLAST) were used in lieu of the Z-score for these two
programs.

RESULTS AND DISCUSSION
Substitution Matrices

The mesostate and the secondary-structure substitution
matrices are shown in Figure 2. Elements of the mesostate
substitution matrix are similarity scores between any two
accessible mesostates as described in Materials and Meth-
ods. In physical terms, this score can be interpreted as the
relative height of the energy barrier between any two
states; transitions between dissimilar states (e.g., helical
and extended) will then have negative scores. Only the 10
accessible mesostates are listed in the substitution matrix;
all others are represented by “Z.” Accessible mesostates
fall into three groups: right-handed helical {O, P, J},
extended {L, G, M, R}, and left-handed helical {o, p, r}. In
combination, these 10 mesostates can adopt almost any

TABLE I. Programs Used in SCOP Benchmark Tests

Name Package version Source Parameter

FASTA FASTA3.3 ftp://ftp.virginia.edu/pub/fasta/ Gap � 14 � 2 � n
SMITH–WATERMAN FASTA3.3 ftp://ftp.virginia.edu/pub/fasta/ Gap � 14 � 2 � n
WU-BLAST WU-BLAST2.0 http://blast.wustl.edu/blast/executables/ Gap � 9 � 2 � n
SAM SAM-T2K http://www.cse.ucsc.edu/research/compbio/sam.html Filter: WU-BLAST2.0
VAST VAST ftp://ftp.ncbi.nih.gov/mmdb/vastdata/ P-value cutoff: 0, 4

Fig. 2. The (A) mesostate and (B) secondary-structure substitution
matrices.
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secondary structure. Exceptions involve structures with
mesostates from {A, F, m, j} that are found only rarely in
the Protein Data Bank (PDB) or are accessible only to
glycine.

The secondary-structure substitution matrix was con-
structed to reward correct alignment between elements of
secondary structure, and, conversely, to penalize their
misalignment. Similar to the strategy used by Przytycka
et al.,19 the penalty is highest for attempted alignment
between helix/turn and extended structure. Matrix values
were chosen to be smaller than scores in the mesostate
substitution matrix, such that the latter play the domi-
nant role in aligning structures [in eq. (1)].

Benchmark Tests

Three benchmark tests are reported as “specificity vs.
sensitivity” curves for the SCOP family, superfamily, and
fold benchmarks, respectively (Figs. 3–5). Our mesostate
alignment algorithm performs quite well in family recogni-
tion (Fig. 3). Additionally, there is improved performance
over some previous methods18 in both fold and superfamily
tests. Possibly, these ostensible improvements are merely
for technical reasons: i.e. self-detection is allowed in our
benchmark tests, and representatives in our test set
libraries are limited to those with at least two other library
members in each case. Nevertheless, the relative position
of the MESO_ALIGN curves exceeds that of the pairwise
sequence alignment programs (FASTA, WU-BLAST, and
SMITH–WATERMAN) in all three benchmarks. SAM, a
sequence-to-profile method, also exceeds pairwise align-
ment in all benchmarks.

Summarizing, MESO_ALIGN offers improved perfor-
mance over pairwise sequence alignment programs. In-
deed, cases can be identified in which MESO_ALIGN

outperforms all other methods tested here; three such
examples are given in Table II. In the family benchmark
test (Fig. 3), its performance rivals VAST in the middle
range and even exceeds VAST (as well as the other
pairwise alignment methods) at high specificity (�0.6),
suggesting that mesostate information may be sufficient to
determine three-dimensional structure.

Discussion

Despite the use of coarse-grained mesostates, crude
matrices, a simple gap penalty, and a naı̈ve pairwise
alignment algorithm, the effective performance of ME-
SO_ALIGN in family recognition invites the conjecture
that secondary-structure information alone is sufficient to
determine the overall tertiary fold. If true, the NP-
complete problem of aligning two protein structures can be
simplified to the polynomial-time problem of aligning two
one-dimensional secondary structure sequences.

Fig. 3. Specificity vs. sensitivity curve of SCOP family benchmark test.
Programs include: MESO_ALIGN (solid light blue line with triangles);
SMITH–WATERMAN (solid pink line with squares); FASTA (solid dark
blue line with circles); WU-BLAST (dashed red line with circles); SAM
(solid aqua line with pluses); VAST with p-value cutoff � 0 (solid cyan line
with forks); VAST with p-value cutoff � 4 (dashed purple line with forks).
As a control, secondary structure alignment is also shown (solid blue line
with open triangles).

Fig. 4. Specificity vs. sensitivity curve of SCOP superfamily bench-
mark test. Programs and their annotations are as in Figure 3.

Fig. 5. Specificity vs. sensitivity curve of SCOP fold benchmark test.
Programs and their annotations are as in Figure 3.
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It is often assumed that structurally related proteins in
the PDB are Boltzmann-distributed over a narrow energy
range32 that has attained equilibrium during the time-
course of evolution. Accordingly, the score in a PAM matrix
can be interpreted as representing the free energy cost of
residue substitution33 in such a process. Similarly, the
scores in our mesostate substitution matrix can also be
regarded as the free energy cost of transitions between
mesostate pairs during protein folding, given that they
were obtained from Monte Carlo simulation29 using the
Metropolis criterion.34 Furthermore, the total alignment
score would then reflect the energy cost, relative to the
self-alignment, of transforming one backbone conforma-
tion into another. Thus, an advantage of mesostate align-
ment is that it can detect thermodynamically interconvert-
ible structures, at least in principle.

Another distinct advantage of shifting the focus to
thermodynamically interconvertible structures is their
lack of dependence on a global coordinate system. For
example, altering a flexible loop between two protein
domains could confound structural comparison methods
such as VAST. However, the original and altered conforma-
tions would still be detected as thermodynamically inter-
convertible by mesostate alignment.

The approach described in this article can be regarded
as an ongoing experiment, with opportunities for improve-
ment. For example, our substitution matrix was derived
from a rudimentary simulation and can undoubtedly be
further refined. Other strategies for devising the matrix
could also be explored. Strategies based on evolutionary
arguments are especially appealing, such as generating
the matrix from aligned homologs, like a PAM matrix33 or
from aligned key segments, like a BLOSUM matrix.31

Sequence information was deliberately neglected in this
work because we wanted to test the degree to which second-
ary structure alone is sufficient for fold and family recogni-
tion. However, side chains play an important role in the
folding process,35 and their inclusion would complement and
presumably improve detection sensitivity and specificity; see
for example ref. 23. The inclusion of sequence information
might result in apparent improvement for a technical reason
as well: some SCOP assignments are based not only on
structure similarity but also on sequence conservation at key
positions. In such cases, the SCOP “gold standard” is not
entirely compatible with algorithms based solely on back-
bone structure (e.g., VAST and MESO_ALIGN).

A final strategy for improvement involves reformulating
the mesostate alignment program as a sequence-to-profile
or a profile-to-profile algorithm. It was shown that compari-

sons using multiple sequences detect three times as many
remote homologs as pairwise methods.15 A similar finding
is evident in Figures 3–5: the performance of SAM, a
sequence-to-profile algorithm, exceeds that of SMITH–
WATERMAN, a pairwise method. Recent profile-to-profile
algorithms enhance performance even further.
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