DNA Structure and Properties

Biochemistry Boot Camp Session #6 Dinesh Yadav dky12@msstate.edu

DNA

- DNA- a polymer of deoxyribonucleotides
- Found in chromosomes, mitochondria and chloroplasts
- Carries the genetic information

Ν		m	PI	n	٦la	ti	ıre
1 1	\mathbf{U}				. I O	ııı	<i>.</i>

	Base	Nucleoside	Nucleotide	Nucleic Acid	
Purine	Adenine	Adenosine	Adenylate	RNA	
		Deoxy adenosine	Deoxyadenylate	DNA	
	Guanine	Guanosine	Guanylate	RNA	
		Deoxyguanosine	Deoxyguanylate	DNA	
Pyrimidines	Cytosine	cytidine	Cytidylate	RNA	
		Deoxy cytidine	Deoxycytidylate	DNA	
	Thymine	thymidine	Thymidylate		
		deoxy thymidine	Deoxythymidylate	DNA	
	Uracil	uridine	Uridylate	RNA	
	Uracil				

Molecules of Life, pp. 21

DNA & RNA Polymerase: Build up DNA and RNA from nucleoside triphosphates (5' \rightarrow 3' synthesis)

Convention: RNA/DNA typically is read from 5' to 3' direction (e.g. 5'-ATTGCAAC-3')

Reverse Complement

- Watson-Crick base pairing
 - A pairs with T (or U in RNA)
 - G pairs with C
- RNA can "hybridize" with DNA, forming mixed strands
- **Example:** What's the reverse complement to AUCCGCCTT?

9

Structure in DNA

- Bases are planar
- Torsion angles are shown
 - Much more complex than proteins

Saenger, W. Principles of Nucleic Acid Structure.

Nucleic Acid Primary Structure

• Just like proteins: the sequence of bases

5'-dAdGdTdTdCdAdCdCdC-3' (DNA)
AGTTCACCC

5'-AGUUCACCC-3' (RNA)

11

Secondary Structure Pseudoknot Pseudoknot Hairpin Loop Base pairing motifs Source: Wikipedia, "RNA Secondary Structure," "Nucleic Acid Secondary Structure"

Tertiary Structure

	Average Torsion Angles for Nucleic Acid Helices (in						
Structure Type	Alpha	Beta	Gamma	Delta	Epsilon	Zeta	Chi
A-DNA (fibres)	-50	172	41	79	-146	-78	-154
GGCCGGCC	-75	185	56	91	-166	-75	-149
B-DNA (fibres)	-41	136	38	139	-133	-157	-102
CGCGAATTCGCG	-63	171	54	123	-169	-108	-117
Z-DNA (C residues)	-137	-139	56	138	-95	80	-159
Z-DNA (G residues)	47	179	-169	99	-104	-69	68
DNA-RNA decamer	-69	175	55	82	-151	-75	-162
A-RNA	-68	178	54	82	-153	-71	-158

Blackburn and Galt. Nucleic acids in chemistry and biology.

Tertiary & Quaternary Structure

Ribozyme: An RNA capable of catalyzing a chemical reaction

The ribosome contains a significant amount of RNA as well as proteins

Macromolecules can perform incredibly diverse structures! (And we haven't even mentioned lipids and sugars.)

Wikipedia, "Group I Catalytic Intron." Accessed 8/23/2012.

15

Think and Discuss

What are the major differences between DNA and protein structures? What are the similarities?

Review of Intro Biology

- Parts of a eukaryotic animal cell
- Has a nucleus where DNA is stored
- Membrane-bound organelles

Alberts, et al. Molecular Biology of the Cell, 4th Edition.

17

Review of Intro Biology

- Parts of a prokaryotic bacterial cell
- No nucleus: DNA is not linear but circular (no ends)
- No organelles, but ribosomes, etc. exist in the cytoplasm

Source: Wikipedia, "Bacterial Cell Structure."

It's Crowded in There!

Source: Goodsell, D. http://mgl.sripps.edu/people/goodsell/illustration/public/

19

Central Dogma

- DNA → mRNA "Transcription"
 - Synthesized RNA Polymerase
 - RNA formed from 5' to 3'
- mRNA → Protein "Translation"
 - Synthesized by ribosome
 - New proteins formed from NT to CT

Outgoing empty IRNA

Outgoing empty IRNA

Ribosome

Growing peptide chain

Outgoing tRNA

Incoming tRNA

bound to Amino Acid

TRNA-TRNA

W U U C U A

Ribosome

MessengerRNA

Peptide Synthesis

Trick: Reading the DNA in the "standard way", one can easily identify the codons for peptide synthesis.

Source: Wikipedia, "Ribosome"

Different Reading Frames

reading frame: 123 acttacccgggacta first reading frame Y Р G second reading frame L Τ R D third reading frame L Р G

 $Source: \verb|http://www.ncbi.nlm.nih.gov/Class/MLACourse/Original8Hour/Genetics/readingframe.html| \\$

Think and Discuss

Our biochemistry experiments are normally done in aqueous buffer. Is this a good model for the inside of a cell?

Bacterial DNA: Features

- Chromosome is circular
- Replication starts at the origin of replication (Ori, TTATCCACA)
- Plasmid: Any circular DNA in the bacterial cell can be replicated if it has an Ori

Source: Wikipedia, "Circular Bacterial Chromosome"

25

Summary

- DNA structure is as varied as protein structure, and nucleic acids can catalyze chemical reactions ("ribozymes")
- Bacterial and animal cells store and process DNA slightly differently, although both use similar ribosomes and the same genetic code
- Modern molecular biology allows us to express virtually any gene using bacterial expression systems

Nucleic Acid Extinction Coefficient

DNA Concentrations: Often measured in $\mu g/mL$ (or the equivalent $ng/\mu L$) instead of M, mM, etc. Also sequence isn't exactly known in many cases

Rule of Thumb: For doublestranded, plasmid DNA, the extinction coefficient at 260 nm is

 $0.020 \, (\mu g/mL)^{-1} \, cm^{-1}$

Source: www.jascoinc.com

27

DNA vs. Protein Absorbance

DNA Concentrations: At 260 nm, doublestranded DNA has an extinction coefficient of

 $0.020 \, (\mu g/mL)^{-1} \, cm^{-1}$

Protein Concentrations: At 280 nm, the GB3 protein has an extinction coefficient (in equivalent units) of

 $0.0016 \, (\mu g/mL)^{-1} \, cm^{-1}$

Which is more sensitive?

What are the implications?

Other Values for Long, Randomized Sequences

- Single-Stranded RNA: 0.025 (μg/mL)⁻¹ cm⁻¹
- Single-Stranded DNA: 0.030 (μg/mL)⁻¹ cm⁻¹
- For a pure nucleic acid, the 260/280 nm ratio should be approximately 1.8-2.0

29

Nucleic Acids – Smaller Molecules

• IDT DNA Calculator: http://biophysics.idtdna.com/UVSpectrum.html

Source: www.jascoinc.com

Calculating Reverse Complement

 Bioinformatics.org Calculator (no-frills): http://bioinformatics.org/sms/rev_comp.html

Source: www.jascoinc.com

31

DNA Translation Tool

• Site:

http://web.expasy.org/translate/

- Input: DNA or RNA sequence (5' → 3' orientation)
- Output: All six possible translation frames

Other Databases

- Entrez works for DNA sequences, too (reference sequences start with NM_)
- PDB also houses a number of RNA/DNA structures in addition to proteins

33

Putting it Together: SDSC Biology Workbench

- Site: http://workbench.sdsc.edu/
- **Exercise:** Create an account, try to examine some of the tools. What looks familiar?

Think And Discuss

How can these databases be used to make your lab work easier? What are some practical examples

35

DNA "Melting"

- Two strands come together:
 - How much work can be done?
 - Which side of the reaction does temperature favor?

Thermal Melts

- Adding heat favors highly random systems,
 DNA will separate at high temperature
 - Secondary and tertiary structure is lost, primary is maintained
- What will affect the melting temperature?

37

Predicting Melting Temperatures

- To calculate T_m, add 4 °C for each G-C pair, and 2 °C for each A-T
 - Not terribly accurate
- Example: GCCCTGAAGGTCAAGTCCCCC
 - $-14 \text{ G-C} = 56 ^{\circ}\text{C}$
 - -7 A-T = 14 °C
 - Prediction is 70

Predicting Melting Temperatures

- IDT OligoAnalyzer: http://www.idtdna.com/analyzer/Applications/OligoAnalyzer/
- **Input:** Your DNA sequence of interest, salt concentration
- **Output:** T_m, extinction coefficient, %GC content

39

Predicting Secondary Structure

- mfold Web Server:
 http://mfold.rna.albany.edu/?q=mfold
- Input: RNA/DNA sequence
- Output:

Example: HIV TAR RNA

 Trans-Activation Response Element – Binds with a protein (Tat) to promote viral transcription

41

Why is this Useful?

- Site-Directed Mutagenesis
- Good Primers:
 - $-T_m > 78$ °C (2 mM MgCl₂, 50 mM NaCl)
 - GC content > 40%
 - No secondary structure (< 50 bp)
 - End with G or C

General Primer Design Principles

- PCR Steps: Denature (95 °C), anneal (60 °C), extend (70 °C)
- Considerations:
 - Melting Temperature: Should be 52-58 °C
 - **GC Content:** 40-60%
 - Length: ~30 bp (but longer can be okay)
 - Secondary Structure: Avoid if possible
- Lots of software exists (some costs \$\$\$). For more information (some trial and error here):

https://goo.gl/4EwMG3 (Life Technologies)

http://www.premierbiosoft.com/tech_notes/PCR_Primer_Design.html

Example: General Approach | Sequence: | Sequence: | Seases: | Oligo Conc | Oligo C

Think And Discuss

Compared to DNA, why is it harder to calculate melting temperature and dimerization for proteins?

49

Example: Sequence Analysis of SH3 Mutants

- Step 1: Design Primers
 - (we'll do this)
 - Agilent Web Program
- Step 2: Do experiments, get sequence of result
- Step 3: Check sequence to see if mutation was successful (we'll do this)

Think and Discuss

What problems could arise when introducing new mutations in to a known sequence?

Summary

- Advanced computational tools for nucleic acids depend on two things:
 - The simplicity of DNA primary structure (4 bases)
 - The regularity of Watson-Crick base pairing
- Combining DNA and protein tools makes it possible to perform very advanced sequence analysis