DNA Structure and Properties

Biochemistry Boot Camp 2019 Session #7 Siddik Alom ma1889@msstate.edu

1

DNA

- DNA- a polymer of deoxyribonucleotides
- Found in chromosomes, mitochondria and chloroplasts
- Carries the genetic information

2

Nomenclature				
	Base	Nucleoside	Nucleotide	Nucleic Acid
Purine	Adenine	Adenosine	Adenylate	RNA
		Deoxyadenosine	Deoxyadenylate	DNA
	Guanine	Guanosine	Guanylate	RNA
		Deoxyguanosine	Deoxyguanylate	DNA
Pyrimidines	Cytosine	Cytidine	Cytidylate	RNA
		Deoxycytidine	Deoxycytidylate	DNA
	Thymine	Thymidine	Thymidylate	
		Deoxythymidine	Deoxythymidylate	DNA
	Uracil	Uridine	Uridylate	RNA

Nucleic Acids Are Also Polymers

DNA & RNA Polymerase: Build up DNA and RNA from nucleoside triphosphates (5' → 3' synthesis)

Convention: RNA/DNA typically is read from 5' to 3' direction (e.g. 5'-ATTGCAAC-3')

Molecules of Life, pp. 21

6

Nucleic Acid Primary Structure

• Just like proteins: the sequence of bases

5'-dAdGdTdTdCdAdCdCdC-3' (DNA) AGTTCACCC

5'-AGUUCACCC-3' (RNA)

10

Reverse Complement

- Watson-Crick base pairing
 - A pairs with T (or U in RNA)
 - G pairs with C
- RNA can "hybridize" with DNA, forming mixed strands
- **Example:** What's the reverse complement to AUCCGCCTT?

12

11

Think and Discuss

What are the major differences between DNA and protein structures? What are the similarities?

14

13

Central Dogma

- DNA → mRNA "Transcription"
 - Synthesized RNA Polymerase
 - RNA formed from 5' to 3'
- mRNA → Protein "Translation"
 - Synthesized by ribosome
 - New proteins formed from NT to CT

Trick: Reading the DNA in the "standard way", one can easily identify the codons for peptide synthesis.

Source: Wikipedia, "Ribosome"

14

15 16

DNA vs. Protein Absorbance DNA Concentrations: At 260 nm, doublestranded DNA has an extinction coefficient of coefficient of

18

20

Think and Discuss

Our biochemistry experiments are normally done in aqueous buffer. Is this a good model for the inside of a cell?

20

21

Inducible Expression

 IPTG: Turns on protein expression without being hydrolyzed

HOCH₂
CH₃
HO S - C - H
CH₃
H OH H CH₃
H OH CH₃
Isopropyl-β-D-thiogalactoside

23

 Protein expression can be switched on when desired

Bacterial Expression Vectors

• pET Plasmid Genes

- Origin of replication

- Lac repressor (lacl)

- RNA Pol promoter (P_{T7})

- Lac Operator (lacO)

- Polylinker – where your DNA sequence goes (pLink)

- Ampicillin resistance (amp^R)

• Is this plasmid persistent?

22

Source: Mike Blaber, BCH5425 Course Notes

23

When Should I Induce?

- Protein expression is greatest during log phase
- Inducing at lag phase may unnecessarily cripple your cells
- Typically, induce at an OD₆₀₀ of 0.5-0.6
- Always follow your lab's protocols!

25

Summary

- DNA structure is as varied as protein structure, and nucleic acids can catalyze chemical reactions ("ribozymes")
- Bacterial and animal cells store and process DNA slightly differently, although both use similar ribosomes and the same genetic code
- Modern molecular biology allows us to express virtually any gene using bacterial expression systems

Think and Discuss

Why is Ampicillin resistance necessary for the function of the pET vector system?

26

Nucleic Acids – Smaller Molecules

Biophysics

EMA Theremotivements VS Synthese Publications. Tout http:// Contact bis

UV Spectrum of DNA

Superson

**Superso

• IDT DNA Calculator:

http://biophysics.idtdna.com/UVSpectrum.html

Source: www.jascoinc.com

28

27 28

Calculating Reverse Complement

 Bioinformatics.org Calculator (no-frills): http://bioinformatics.org/sms/rev_comp.html

Source: www.jascoinc.com

29

29

Other Databases

- NCBI Databases work for DNA sequences, too (reference sequences start with NM_)
- PDB also houses a number of RNA/DNA structures in addition to proteins

31

DNA Translation Tool

Site: http://web.expasy.org/translate/

Input: DNA or RNA sequence (5' → 3' orientation)

• Output: All six possible translation frames

30

30

Putting it Together:
SDSC Biology Workbench

• Site: http://workbench.sdsc.edu/

• Exercise: Create an account, try to examine some of the tools. What looks familiar?

32

31

Think And Discuss

How can these databases be used to make your lab work easier? What are some practical examples

33

33

Predicting Melting Temperatures

- To calculate T_m, add 4 °C for each G-C pair, and 2 °C for each A-T
 - Not terribly accurate
- Example: GCCCTGAAGGTCAAGTCCCCC
 - 14 G-C = 56 °C
 - -7 A-T = 14 °C
 - Prediction is 70

35

 $\Delta \bar{G}^0 = \hat{i}$

- Two strands come together:
 - How much work can be done?
 - Which side of the reaction does temperature favor?

34

Predicting Melting Temperatures

- IDT OligoAnalyzer: http://www.idtdna.com/analyzer/Applications/OligoAnalyzer/
- Input: Your DNA sequence of interest, salt concentration
- Output: T_m, extinction coefficient, %GC content

36

35

Predicting Secondary Structure

 mfold Web Server: http://mfold.rna.albany.edu/?q=mfold

• Input: RNA/DNA sequence

• Output:

37

General Primer Design Principles

• PCR Steps: Denature (98 °C), anneal (~ 60 °C), extend (72 °C)

• Considerations:

- Melting Temperature: Should be 52-58 °C

- GC Content: 40-60%

- Length: ~30 bp (but longer can be okay)

Secondary Structure: Avoid if possible

• Lots of software exists (some costs \$\$\$). For more information (some trial and error here):

https://goo.gl/4EwMG3 (Life Technologies)
http://www.premierbiosoft.com/tech_notes/PCR_Primer_Design.html

38

39

Think And Discuss

Compared to DNA, why is it harder to calculate melting temperature and dimerization for proteins?

42

41

Think and Discuss

What problems could arise when introducing new mutations in to a known sequence?

Summary

42

- Advanced computational tools for nucleic acids depend on two things:
 - The simplicity of DNA primary structure (4 bases)
 - $\, \mbox{The regularity of Watson-Crick base pairing}$
- Combining DNA and protein tools makes it possible to perform very advanced sequence analysis