Model Fitting using Excel and Gnuplot

Biochemistry Boot Camp 2021 Session #4 Nicholas Fitzkee nfitzkee@chemistry.msstate.edu

1

Think and Discuss

What is a scientific model?

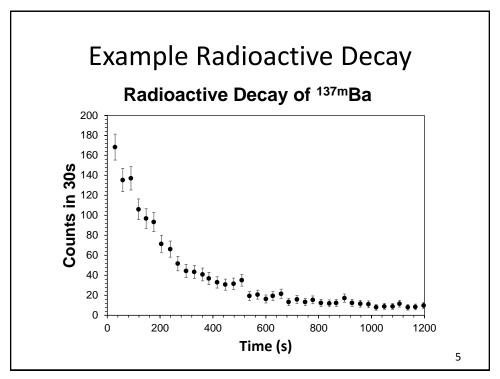
Properties of Models

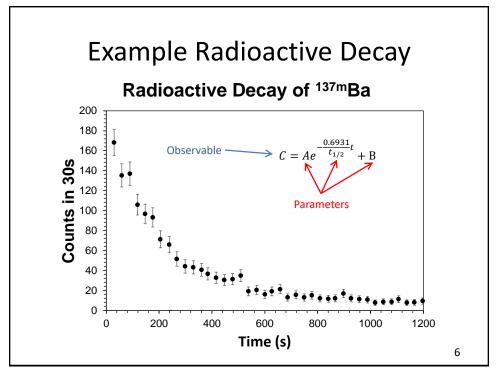
- Explain an <u>observable quantity</u> (e.g. measured heat, growth rate, etc.)
- Express quantity in terms of understandable <u>parameters</u> and fundamental constants (equilibrium constant, rate constants, etc.)
- Should be <u>predictive</u> (so we can test the model)

3

3

Examples: Biochemical Models


• Single site binding: $P + L \rightleftharpoons PL$

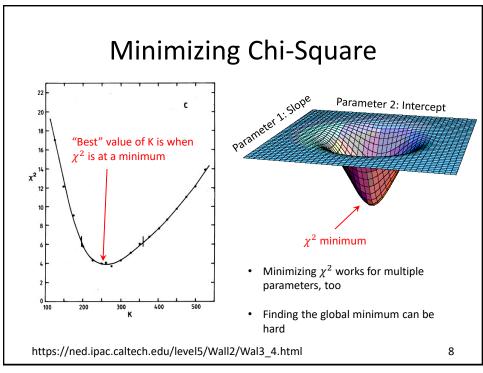

$$\bar{v} = \frac{[PL]}{P_0} = \frac{(P_0 + L_0 + K) - \sqrt{(P_0 + L_0 + K)^2 - 4P_0L_0}}{2P_0}$$

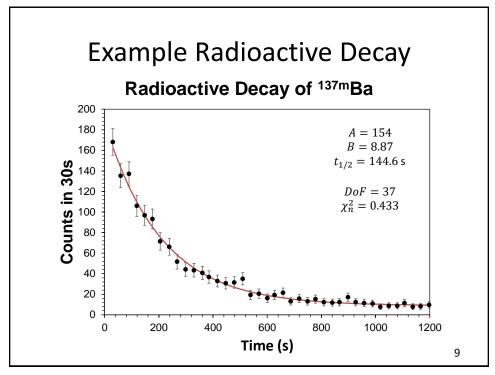
• Folding vs. Temperature: $N \rightleftharpoons U$

$$f = \frac{1}{1+K} = \frac{1}{1+e^{-(\Delta \bar{H}^0 - T\Delta \bar{S}^0)/RT}}$$

4

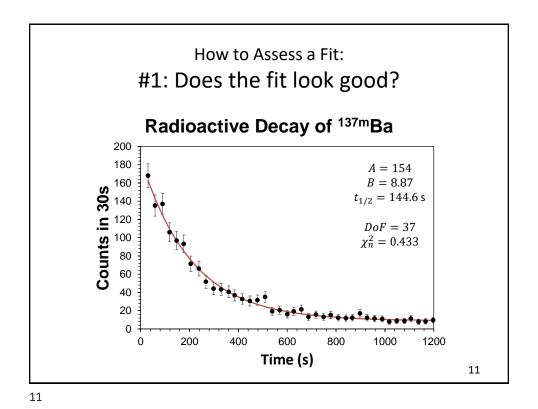
How to Find Parameters?

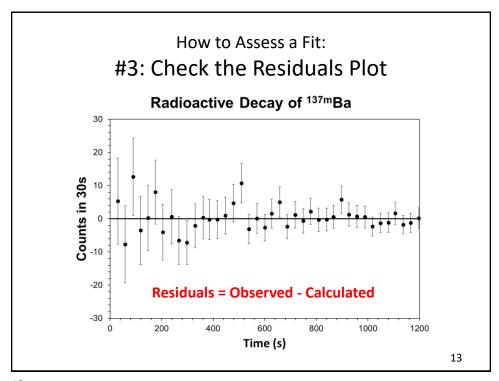

 Minimize the difference between the observed and modelcalculated values:

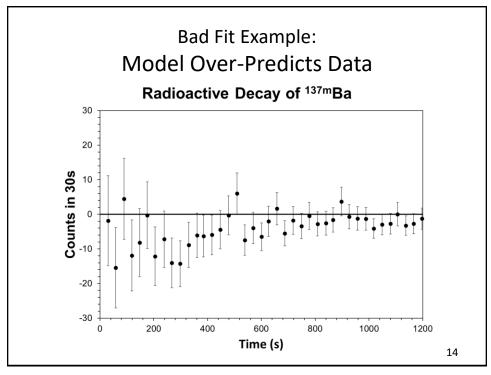

$$\chi_n^2 = \frac{1}{N_d} \sum_i \left\{ \frac{1}{\sigma_i^2} [y_i - f(x_i)]^2 \right\}$$

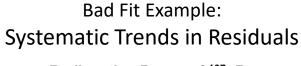
- · Definitions:
 - $-y_i$ = observed data point i
 - $-f(x_i)$ = model calculated point x_i (will change when parameters are changed)
 - $-\sigma_i$ = uncertainty for point i
 - $-N_d$ = # of observations # of parameters

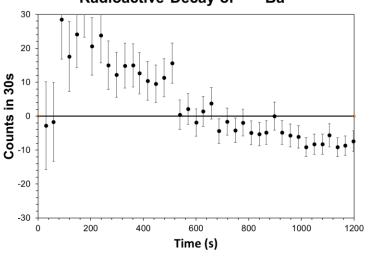
7

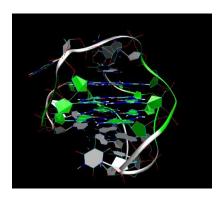

7

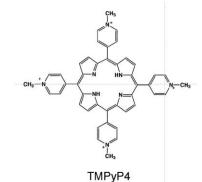



Think and Discuss


The accepted half-life for ^{137m}Ba is 153 s. Is our value of 144.6 good?


How to Assess a Fit: #2: Is Normalized Chi-Square $(\chi_n^2) \le 1.0$? Radioactive Decay of 137mBa 200 180 A = 154160 B = 8.87Counts in 308 120 120 100 80 60 40 $t_{1/2} = 144.6 \,\mathrm{s}$ DoF = 37 $\chi_n^2 = 0.433$ 40 20 0 0 200 400 800 1000 1200 Time (s) 12




Biochemical Model Building

- **Step 1:** Come up with a hypothesis about how a system works
 - How many binding sites?
 - Is there cooperativity?
- **Step 2:** Translate the qualitative hypotheses into an observable mathematical form with *parameters*
 - Example parameters: K, tau, N
 - Parameters may not be known
- Step 3: Design an experiment that that can produce observables from step 2; perform the experiment
 - Optimize the parameters to make the fit look as good as possible
- **Step 4:** Assess the fit Is the agreement convincing?

16

Practical Example: DNA Binding

- What is association constant?
- How many binding sites?

17

17

Practical Example: DNA Binding

$$DNA + L \rightleftarrows DNA \cdot L$$

 $DNA \cdot L + L \rightleftarrows DNA \cdot L_2$

 $DNA \cdot L_{n-1} + L \rightleftarrows DNA \cdot L_n$

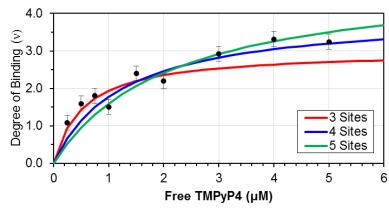
 Assumption in our model: All equilibrium constants are identical (equivalent binding)

18

Practical Example: DNA Binding

• Experimentally, it is possible to measure the <u>degree of binding</u> $(\bar{\nu})$ as a function of free drug concentration (L):

$$\bar{v} = \frac{nK_{eq}L}{1 + K_{eq}L}$$


• We observe $\bar{\nu}$ and L; K_{eq} and n are the parameters.

19

19

Practical Example: DNA Binding

Binding of TMPyP4 to Quadruplex DNA

• Download this data as binding.txt from the website.

20

The Power of Gnuplot

- Minimizing chi-square can be very tricky; Excel isn't always up to the task
- What about estimating uncertainties of the parameters?
- Gnuplot is a tool that can handle some of these challenges (see tutorial)

21

21

Summary

- Biochemical models allow us to quantify and predict the behavior of biological systems
- Fitting parameters allow us to optimize agreement between model and observations
- Programs like Gnuplot enable generalized model fitting with statistical analysis