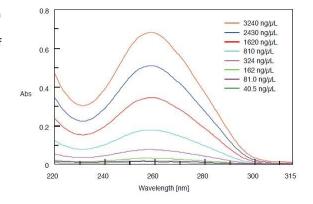
Calculating DNA Properties

Biochemistry Boot Camp 2021
Session #8
Chris Johnson
cn.johnson@chemistry.misstate.edu


1

Nucleic Acid Extinction Coefficient

DNA Concentrations: Often measured in $\mu g/mL$ (or the equivalent $ng/\mu L$) instead of M, mM, etc. Also sequence isn't exactly known in many cases.

Rule of Thumb: For doublestranded, plasmid DNA, the extinction coefficient at 260 nm is

 $0.020 \, (\mu g/mL)^{-1} \, cm^{-1}$

Source: www.jascoinc.com

2

DNA vs. Protein Absorbance

DNA Concentrations: At 260 nm, doublestranded DNA has an extinction coefficient of

Protein Concentrations: At 280 nm, the GB3 protein has an extinction coefficient (in equivalent units) of

0.020 (µg/mL)⁻¹ cm⁻¹

0.0016 (µg/mL)⁻¹ cm⁻¹

Which is more sensitive?

What are the implications?

3

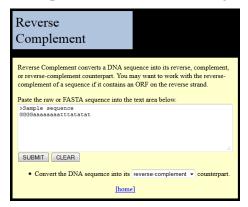
3

Other Values for Long, Randomized Sequences

- Single-Stranded RNA: 0.025 (μg/mL)⁻¹ cm⁻¹
- Single-Stranded DNA: 0.030 (μg/mL)⁻¹ cm⁻¹
- For a pure nucleic acid, the 260/280 nm ratio should be approximately 1.8-2.0

Nucleic Acids - Smaller Molecules

OligoAnalyzer



- IDT DNA Analyzer (extinction coefficient, Tm): https://www.idtdna.com/pages/tools/oligoanalyzer
 - Need to log in, create an account (free)

5

5

Calculating Reverse Complement

 Bioinformatics.org Calculator (no-frills): http://bioinformatics.org/sms/rev_comp.html

Source: www.jascoinc.com

6

DNA Translation Tool

Site: http://web.expasy.org/translate/

- Input: DNA or RNA sequence (5' → 3' orientation)
- Output: All six possible translation frames

7

7

Other Databases

- NCBI Databases work for DNA sequences, too (reference sequences start with NM_)
- PDB also houses a number of RNA/DNA structures in addition to proteins

Think And Discuss

How can these databases be used to make your lab work easier? What are some practical examples?

9

9

DNA "Melting"

$$\Rightarrow \qquad \Rightarrow \qquad \Delta \bar{G}^0 = ?$$

- Two strands come together:
 - How much work can be done?
 - Which side of the reaction does temperature favor?

Thermal Melts

- Adding heat favors highly random systems,
 DNA will separate at high temperature
 - Secondary and tertiary structure is lost, primary is maintained
- What will affect the melting temperature?

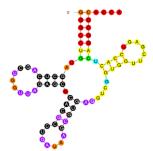
11

11

Predicting Melting Temperatures

- To calculate T_m, add 4 °C for each G-C pair, and 2 °C for each A-T
 - Not terribly accurate
- Example: GCCCTGAAGGTCAAGTCCCCC
 - $-14 \text{ G-C} = 56 ^{\circ}\text{C}$
 - -7 A-T = 14 °C
 - Prediction is 70

Predicting Melting Temperatures


- IDT OligoAnalyzer: https://www.idtdna.com/pages/tools/oligoanalyzer
- Input: Your DNA sequence of interest, salt concentration
- Output: T_m, extinction coefficient, %GC content

13

13

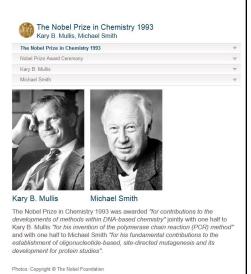
Predicting Secondary Structure

- mfold Web Server:
 http://mfold.rna.albany.edu/?q=mfold
- Input: RNA/DNA sequence
- Output:

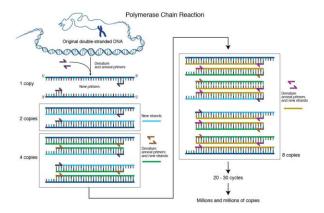
Example: HIV TAR RNA

- Trans-Activation Response Element Binds with a protein (Tat) to promote viral transcription
- Sequence:

GGGUCUCUGGUUAGACCAGAUCUGAGCCUGGGAGCUCUCU GGCUAACUAGGGAACCCAC


15

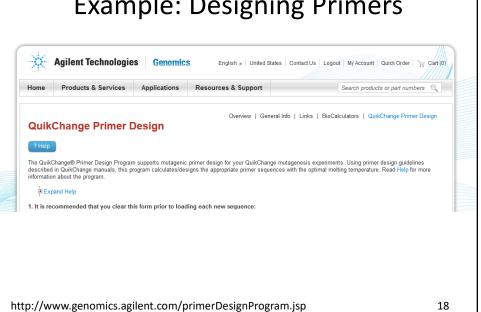
16


15

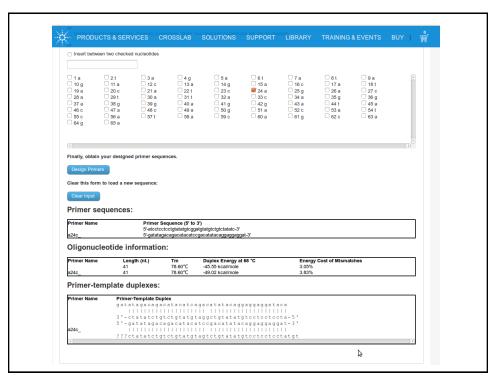
Why is this Useful?

- Site-Directed Mutagenesis
- Good Primers:
 - $-T_m > 78$ °C (2 mM MgCl₂, 50 mM NaCl)
 - GC content > 40%
 - No secondary structure (< 50 bp)
 - End with G or C

Polymerase Chain Reaction (PCR)


Key consideration: Temperature for primer annealing (computational tools)!

https://www.genome.gov/genetics-glossary/Polymerase-Chain-Reaction


17

17

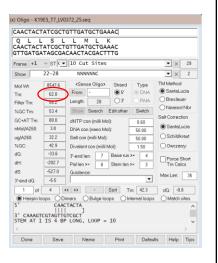
Example: Designing Primers

	& Expand Help	SERVICES	CROSSLAB			LIBRART	TOAINING	a EVENTS	801	₩	
	t is recommended t	hat you clear ti	nis form prior to los	iding each new seq	juence:						
4	lear Input										
2.	Select QuikChange®	mutagenesis									
Q	ikChange® II		Hel	p in choosing a muta	agenesis kit						
3.	Find your DNA sequ	ence by pressi	ng								
	d a file from your har			n text or FASTA-form			ow:				
N	file selected	Browse	atagatataga acatcataca	acagacatacatcaga gcaga	catatacaggagga	ggatacacag					
4.	Load It.										
	lpload Now - or -	Upload Transla	ited								
or	specify a DNA region	to translate from	n	to		Up	load Translated F	Region			
5.	Select up to seven n	ucleotides that	you want to chang	e 🔞							
DN	A: change nucleotide	(s) to: g	Site 2	Site 3 Site			Site 7				
	Delete a region betwe	en two checker	I nucleotides (Note: 1	two checked nucleoti	ides will not be de	leted)	Þ				
or	Delete a region between two ci			two checked nucleot	ides will not be de	leted)	₽				
or	-			two checked nucleof	ides will not be de	ieted)	Þ				
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	-	3: 12: 2: 3: 3: 3: 3: 3: 3: 3: 3: 3: 3: 3: 3: 3:	a 4g c 13 a 22t a 31t	5 a 14 g 23 c 32 a 41 g 50 g	☐ 6 t ☐ 15 a ☑ 24 a ☐ 33 c	7 a 16 c 25 g 34 a	8t 17 a 26 a 35 g 44 t	9 a 16 t 27 c 36 g 45 a 54 t 63 a			

General Primer Design Principles

- PCR Steps: Denature (95 °C), anneal (60 °C), extend (70 °C)
- Considerations:
 - Melting Temperature: Should be 52-58 °C
 - GC Content: 40-60%
 - Length: ~30 bp (but longer can be okay)
 - Secondary Structure: Avoid if possible
- Lots of software exists (some costs \$\$\$). For more information (some trial and error here):

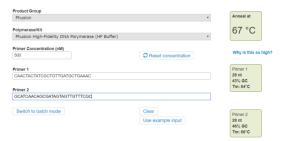
https://goo.gl/4EwMG3 (Life Technologies)

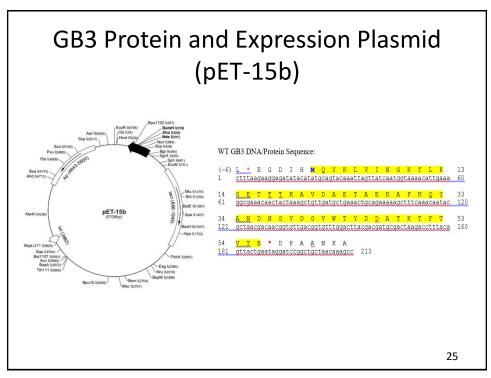

http://www.premierbiosoft.com/tech_notes/PCR_Primer_Design.html

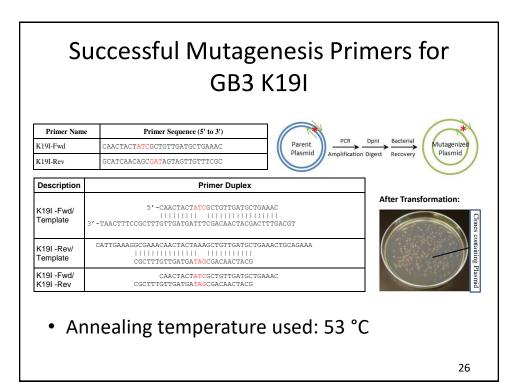
21

Exact and Single Base Mismatch DNA Thermodynamics Primary Sequence: 5' to 3'; Target Sequence: 3' to 5' Additional Target Base 5' CGAAGAACAGGAAGCGGAATTTAAAGAAG 3'. CGAAGAACAGGAAGCGGAATTTAAATTTCTC WUse Exact Complement Ta CUser Defined Target Concentration IDT OligoAnalyzer Mismatch Mode – estimate Tm cost of non-matching bases 22

Other Calculators: GeneRunner


- Download (free) from http://generunner.net/
- Analysis → Oligo brings up window to the right
- Suggested options shown to the right
 - SantaLucia temperature & salt recommended
 - Check your specific dNTP, DNA, Mg²⁺ and salt concentrations


23


23

Other Calculators: Phusion Calculator

- Some polymerases have their own calculator specific to buffers, recommendations
- Phusion Polymerase found at NEB website (<u>https://tmcalculator.neb.com/#!/main</u>)

Think And Discuss

Compared to DNA, why is it harder to calculate melting temperature and dimerization for proteins?

27

27

Example: Sequence Analysis of SH3 Mutants

- Step 1: Design Primers (for T22G)
 - Agilent Web Program (we'll do this)
- Step 2: Do experiments, get sequence of result
- Step 3: Check sequence to see if mutation was successful (we'll do this)

Think and Discuss

What problems could arise when introducing new mutations in to a known sequence?

29

Summary

- Advanced computational tools for nucleic acids depend on two things:
 - The simplicity of DNA primary structure (4 bases)
 - The regularity of Watson-Crick base pairing
- Combining DNA and protein tools makes it possible to perform very advanced sequence analysis