Detection of twinning


Please note that only true hemihedral twinning can be deal with correctly in CNS. Data with pseudo-merohedral twinning can not be used (the program SHELXL is suggested instead).

Prior to refinement the twinning operator must be identified and the twinning fraction calculated. One of the best ways to do this is with Todd Yeates's web-based Merohedral Crystal Twinning Server. This is currently located at the following URL:

http://www.doe-mbi.ucla.edu/Services/Twinning

Experimental diffraction data is given in either CIF or X-PLOR format. Various tests are performed for perfect or partial twinning.

Alternatively, twinning can be identified in CNS using the detect_twinning.inp task file:

      cns_solve < detect_twinning.inp > detect_twinning.out [10 seconds]

Perfect twinning is tested for by analysis of intensity statistics:

StatisticUntwinned dataTwinned data
<I2>/<I>22.01.5
<F>2/<F2>0.7850.865

Partial twinning is tested by application of the possible twin laws and calculation of the twinning fraction. The possible hemihedral twinning operators for different point groups are:

True point group Twin operation hkl related to
3 2 along a,b h,-h-k,-l
2 along a*,b* h+k,-k ,-l
2 along c -h,-k , l
4 2 along a,b,a*,b* h,-k ,-l
6 2 along a,b,a*,b* h,-h-k,-l
3212 along a*,b*,c -h,-k , l
3122 along a,b,c -h,-k , l
23 4 along a,b,c k,-h , l

A listing file (detect_twinning.list) is produced:

==============================================================================

                        testing for perfect twinning

 column  1:     bin number
 columns 2:     upper resolution limit
 columns 3:     lower resolution limit
 column  4:     number of reflections in bin
 column  5:     average resolution in bin
 column  6:     <|I|^2> /(<|I|>)^2
 column  7:     (<|F|>)^2/<|F|^2>
 column  8:     fraction of theoretically complete data

 <|I|^2> /(<|I|>)^2 is 2.0 for untwinned data, 1.5 for twinned data
 (<|F|>)^2/<|F|^2> is 0.785 for untwinned data, 0.865 for twinned data

 #bin | resolution range | #refl |
    1   8.12  500.01        481     11.6016    1.8597    0.8063    0.9469
    2   6.44    8.12        509      7.1613    1.8921    0.8264    0.9864
    3   5.63    6.44        502      6.0042    1.6015    0.8615    0.9941
    4   5.12    5.63        509      5.3576    1.8113    0.8416    0.9903
    5   4.75    5.12        509      4.9234    1.6795    0.8545    0.9941
    6   4.47    4.75        514      4.6003    1.9726    0.8228    0.9942
    7   4.24    4.47        510      4.3488    1.6194    0.8617    0.9961
    8   4.06    4.24        494      4.1487    1.6394    0.8653    0.9940
    9   3.90    4.06        518      3.9796    1.6701    0.8542    0.9942
   10   3.77    3.90        511      3.8322    1.6527    0.8594    1.0000
   11   3.65    3.77        485      3.7096    1.6670    0.8597    1.0000
   12   3.55    3.65        523      3.6004    2.0337    0.8147    0.9962
   13   3.45    3.55        496      3.5000    1.6600    0.8540    1.0000
   14   3.37    3.45        513      3.4134    1.7394    0.8433    1.0000
   15   3.29    3.37        525      3.3305    1.6369    0.8724    1.0000
   16   3.22    3.29        516      3.2567    1.6324    0.8653    1.0000
   17   3.16    3.22        504      3.1882    1.5324    0.8773    1.0000
   18   3.10    3.16        502      3.1285    1.5510    0.8686    1.0000
   19   3.04    3.10        507      3.0710    1.5434    0.8649    1.0000
   20   2.99    3.04        519      3.0172    1.5979    0.8639    1.0000
   21   2.94    2.99        490      2.9684    1.6205    0.8555    1.0000
   22   2.90    2.94        501      2.9218    1.6645    0.8544    1.0000
   23   2.86    2.90        549      2.8778    1.7637    0.8524    1.0000
   24   2.81    2.86        496      2.8342    1.5402    0.8710    1.0000
   25   2.78    2.81        520      2.7956    1.5934    0.8699    1.0000
   26   2.74    2.78        508      2.7584    1.6435    0.8508    1.0000
   27   2.71    2.74        479      2.7245    1.5868    0.8674    1.0000
   28   2.67    2.71        544      2.6904    1.5539    0.8720    1.0000
   29   2.64    2.67        507      2.6584    1.6037    0.8625    1.0000
   30   2.61    2.64        481      2.6283    1.5426    0.8727    1.0000
   31   2.58    2.61        546      2.5990    1.6387    0.8533    1.0000
   32   2.56    2.58        502      2.5710    1.6343    0.8585    1.0000
   33   2.53    2.56        501      2.5443    1.6461    0.8594    1.0000
   34   2.51    2.53        514      2.5190    1.7216    0.8447    1.0000
   35   2.48    2.51        521      2.4938    1.7390    0.8439    1.0000
   36   2.46    2.48        497      2.4710    1.6592    0.8554    1.0000
   37   2.44    2.46        500      2.4479    1.5611    0.8739    1.0000
   38   2.42    2.44        532      2.4256    1.6924    0.8597    1.0000
   39   2.39    2.42        512      2.4049    1.6382    0.8568    1.0000
   40   2.37    2.39        497      2.3840    1.5590    0.8614    1.0000
   41   2.35    2.37        498      2.3645    1.6063    0.8553    1.0000
   42   2.34    2.35        531      2.3455    1.6451    0.8616    1.0000
   43   2.32    2.34        494      2.3267    1.5962    0.8643    1.0000
   44   2.30    2.32        541      2.3088    1.7558    0.8438    1.0000
   45   2.28    2.30        477      2.2910    1.6323    0.8609    1.0000
   46   2.27    2.28        513      2.2744    1.5182    0.8894    1.0000
   47   2.25    2.27        535      2.2580    1.5523    0.8878    0.9853

---------------------------averages-over-all-bins-----------------------------
  <|I|^2> /(<|I|>)^2  =    1.6581 (2.0   for untwinned, 1.5   for twinned)
  (<|F|>)^2/<|F|^2> =    0.8574 (0.785 for untwinned, 0.865 for twinned)
------------------------------------------------------------------------------

==============================================================================

      testing for partial twinning (using statistical method of Yeates)


>>>> testing for twinning operator= h,-h-k,-l


   <H> =  0.19495: twinning fraction= 0.305 (10554 reflections used)
   <H2> =  0.05152: twinning fraction= 0.303 (10554 reflections used)


>>>> testing for twinning operator= h+k,-k,-l


   <H> =  0.39128: twinning fraction= 0.109 (3670 reflections used)
   <H2> =  0.21541: twinning fraction= 0.098 (3670 reflections used)


>>>> testing for twinning operator= -h,-k,l


   <H> =  0.38104: twinning fraction= 0.119 (3878 reflections used)
   <H2> =  0.20745: twinning fraction= 0.106 (3878 reflections used)

==============================================================================

The twinning operator h,-h-k,-l indicates a high twinning fraction (0.304). This is used in the subsequent refinement steps.

If the twinning fraction is greater than 0.45 it becomes very difficult to detwin the data. In such cases it may be better to average twin related reflections to generate perfectly twinned data. For further information see T.O. Yeates, Detecting and Overcoming crystal twinning, Meth. Enzym. 276, 344-358 (1997)

Script to run this tutorial
Back to tutorials   Next section