Please note that only true hemihedral twinning can be deal with correctly in CNS. Data with pseudo-merohedral twinning can not be used (the program SHELXL is suggested instead).
Prior to refinement the twinning operator must be identified and the twinning fraction calculated. One of the best ways to do this is with Todd Yeates's web-based Merohedral Crystal Twinning Server. This is currently located at the following URL:
http://www.doe-mbi.ucla.edu/Services/TwinningExperimental diffraction data is given in either CIF or X-PLOR format. Various tests are performed for perfect or partial twinning.
Alternatively, twinning can be identified in CNS using the detect_twinning.inp task file:
cns_solve < detect_twinning.inp > detect_twinning.out [10 seconds]
Perfect twinning is tested for by analysis of intensity statistics:
Statistic | Untwinned data | Twinned data |
<I2>/<I>2 | 2.0 | 1.5 |
<F>2/<F2> | 0.785 | 0.865 |
Partial twinning is tested by application of the possible twin laws and calculation of the twinning fraction. The possible hemihedral twinning operators for different point groups are:
True point group | Twin operation | hkl related to |
3 | 2 along a,b | h,-h-k,-l |
2 along a*,b* | h+k,-k ,-l | |
2 along c | -h,-k , l | |
4 | 2 along a,b,a*,b* | h,-k ,-l |
6 | 2 along a,b,a*,b* | h,-h-k,-l |
321 | 2 along a*,b*,c | -h,-k , l |
312 | 2 along a,b,c | -h,-k , l |
23 | 4 along a,b,c | k,-h , l |
A listing file (detect_twinning.list) is produced:
============================================================================== testing for perfect twinning column 1: bin number columns 2: upper resolution limit columns 3: lower resolution limit column 4: number of reflections in bin column 5: average resolution in bin column 6: <|I|^2> /(<|I|>)^2 column 7: (<|F|>)^2/<|F|^2> column 8: fraction of theoretically complete data <|I|^2> /(<|I|>)^2 is 2.0 for untwinned data, 1.5 for twinned data (<|F|>)^2/<|F|^2> is 0.785 for untwinned data, 0.865 for twinned data #bin | resolution range | #refl | 1 8.12 500.01 481 11.6016 1.8597 0.8063 0.9469 2 6.44 8.12 509 7.1613 1.8921 0.8264 0.9864 3 5.63 6.44 502 6.0042 1.6015 0.8615 0.9941 4 5.12 5.63 509 5.3576 1.8113 0.8416 0.9903 5 4.75 5.12 509 4.9234 1.6795 0.8545 0.9941 6 4.47 4.75 514 4.6003 1.9726 0.8228 0.9942 7 4.24 4.47 510 4.3488 1.6194 0.8617 0.9961 8 4.06 4.24 494 4.1487 1.6394 0.8653 0.9940 9 3.90 4.06 518 3.9796 1.6701 0.8542 0.9942 10 3.77 3.90 511 3.8322 1.6527 0.8594 1.0000 11 3.65 3.77 485 3.7096 1.6670 0.8597 1.0000 12 3.55 3.65 523 3.6004 2.0337 0.8147 0.9962 13 3.45 3.55 496 3.5000 1.6600 0.8540 1.0000 14 3.37 3.45 513 3.4134 1.7394 0.8433 1.0000 15 3.29 3.37 525 3.3305 1.6369 0.8724 1.0000 16 3.22 3.29 516 3.2567 1.6324 0.8653 1.0000 17 3.16 3.22 504 3.1882 1.5324 0.8773 1.0000 18 3.10 3.16 502 3.1285 1.5510 0.8686 1.0000 19 3.04 3.10 507 3.0710 1.5434 0.8649 1.0000 20 2.99 3.04 519 3.0172 1.5979 0.8639 1.0000 21 2.94 2.99 490 2.9684 1.6205 0.8555 1.0000 22 2.90 2.94 501 2.9218 1.6645 0.8544 1.0000 23 2.86 2.90 549 2.8778 1.7637 0.8524 1.0000 24 2.81 2.86 496 2.8342 1.5402 0.8710 1.0000 25 2.78 2.81 520 2.7956 1.5934 0.8699 1.0000 26 2.74 2.78 508 2.7584 1.6435 0.8508 1.0000 27 2.71 2.74 479 2.7245 1.5868 0.8674 1.0000 28 2.67 2.71 544 2.6904 1.5539 0.8720 1.0000 29 2.64 2.67 507 2.6584 1.6037 0.8625 1.0000 30 2.61 2.64 481 2.6283 1.5426 0.8727 1.0000 31 2.58 2.61 546 2.5990 1.6387 0.8533 1.0000 32 2.56 2.58 502 2.5710 1.6343 0.8585 1.0000 33 2.53 2.56 501 2.5443 1.6461 0.8594 1.0000 34 2.51 2.53 514 2.5190 1.7216 0.8447 1.0000 35 2.48 2.51 521 2.4938 1.7390 0.8439 1.0000 36 2.46 2.48 497 2.4710 1.6592 0.8554 1.0000 37 2.44 2.46 500 2.4479 1.5611 0.8739 1.0000 38 2.42 2.44 532 2.4256 1.6924 0.8597 1.0000 39 2.39 2.42 512 2.4049 1.6382 0.8568 1.0000 40 2.37 2.39 497 2.3840 1.5590 0.8614 1.0000 41 2.35 2.37 498 2.3645 1.6063 0.8553 1.0000 42 2.34 2.35 531 2.3455 1.6451 0.8616 1.0000 43 2.32 2.34 494 2.3267 1.5962 0.8643 1.0000 44 2.30 2.32 541 2.3088 1.7558 0.8438 1.0000 45 2.28 2.30 477 2.2910 1.6323 0.8609 1.0000 46 2.27 2.28 513 2.2744 1.5182 0.8894 1.0000 47 2.25 2.27 535 2.2580 1.5523 0.8878 0.9853 ---------------------------averages-over-all-bins----------------------------- <|I|^2> /(<|I|>)^2 = 1.6581 (2.0 for untwinned, 1.5 for twinned) (<|F|>)^2/<|F|^2> = 0.8574 (0.785 for untwinned, 0.865 for twinned) ------------------------------------------------------------------------------ ============================================================================== testing for partial twinning (using statistical method of Yeates) >>>> testing for twinning operator= h,-h-k,-l <H> = 0.19495: twinning fraction= 0.305 (10554 reflections used) <H2> = 0.05152: twinning fraction= 0.303 (10554 reflections used) >>>> testing for twinning operator= h+k,-k,-l <H> = 0.39128: twinning fraction= 0.109 (3670 reflections used) <H2> = 0.21541: twinning fraction= 0.098 (3670 reflections used) >>>> testing for twinning operator= -h,-k,l <H> = 0.38104: twinning fraction= 0.119 (3878 reflections used) <H2> = 0.20745: twinning fraction= 0.106 (3878 reflections used) ==============================================================================
The twinning operator h,-h-k,-l indicates a high twinning fraction (0.304). This is used in the subsequent refinement steps.
If the twinning fraction is greater than 0.45 it becomes very difficult to detwin the data. In such cases it may be better to average twin related reflections to generate perfectly twinned data. For further information see T.O. Yeates, Detecting and Overcoming crystal twinning, Meth. Enzym. 276, 344-358 (1997)
Script to run this tutorial